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We numerically study the dynamics of a discrete spring-block model introduced by Olami, Feder, and
Christensen �OFC� to mimic earthquakes and investigate to what extent this simple model is able to reproduce
the observed spatiotemporal clustering of seismicity. Following a recently proposed method to characterize
such clustering by networks of recurrent events �J. Davidsen, P. Grassberger, and M. Paczuski, Geophys. Res.
Lett. 33, L11304 �2006��, we find that for synthetic catalogs generated by the OFC model these networks have
many nontrivial statistical properties. This includes characteristic degree distributions, very similar to what has
been observed for real seismicity. There are, however, also significant differences between the OFC model and
earthquake catalogs, indicating that this simple model is insufficient to account for certain aspects of the
spatiotemporal clustering of seismicity.
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I. INTRODUCTION

Describing and modeling the spatiotemporal organization
of seismicity and understanding the underlying physical
mechanisms of earthquake triggering have proved challeng-
ing. Inspired by empirical regularities, which include self-
similar scaling laws like the Omori law and the Gutenberg-
Richter law �1,2�, a wealth of mechanisms and models have
been proposed including the concepts of a critical earth-
quake, of self-organized criticality, and more generally of the
seismogenic crust as a self-organized complex system requir-
ing a so-called systems approach �see, for example, Refs.
�3,4� for a review�. Yet the origin of the observed nontrivial
emergent features of earthquake occurrence is still one of the
main unresolved problems in the field.

Resolving this issue may require measuring the micro-
scopic state variables—the stress and strain at every point
within the Earth along active earthquake faults—and their
exact dynamics. This is currently impossible. However, the
associated earthquake patterns are readily observable, mak-
ing macroscopic approaches based on the concept of spa-
tiotemporal point processes feasible, where the description
of each earthquake is reduced to its size or magnitude, its
epicenter, and its time of occurrence. Describing the patterns
of seismicity may shed light on the fundamental physics
since these patterns are emergent processes of the underlying
many-body nonlinear system.

Recently, such an approach has led to the identification of
new properties of the clustering of seismicity in space and
time �5–16�. In particular, the observed spatiotemporal clus-
tering of seismicity suggests that the usual mainshock-
aftershock scenario—where each event has at most one cor-
related predecessor of larger magnitude—is too simplistic
and that the causal structure of seismicity could extend be-

yond immediately subsequent events. To quantify such cor-
relations, a general procedure for inferring a plausible causal
structure from clusters of localized events has been intro-
duced in Refs. �17,18�. The approach allows one to study the
dynamical organization of spatiotemporal activity in terms of
the topology of complex networks �19,20� and has led to the
detection of unexpected statistical features for earthquake
catalogs from California. Most importantly, the approach
provides a new and independent estimate of the rupture
length and its scaling with magnitude.

In this article, we investigate to which extent the simple
dynamics of the Olami-Feder Christensen �OFC� model �21�
is sufficient to account for the observed spatiotemporal clus-
tering of seismicity as characterized by the above network
approach. The OFC model is maybe the simplest model in
the class of self-organized critical �SOC� models which ex-
hibit a phenomenology resembling seismicity. This includes
the aforementioned Gutenberg-Richter law for the
frequency-magnitude distribution �21,22� and the Omori law
for aftershocks �23,24� as well as some statistical properties
of epicenter locations and dynamics �25�. In addition, the
OFC model is of special relevance in the context of SOC.
Nonequilibrium systems are called self-organized critical if
they reach a stationary state characterized by power laws and
the absence of characteristic scales—without the need for
fine-tuning an external parameter such as the temperature
�26,27�. This is typically the case for slowly driven systems
with fast avalanchelike dissipation events. Unlike the para-
digmatic SOC sandpile model �28�, where any amount of
dissipation is enough to introduce a scale which breaks criti-
cality, the existence of criticality in the OFC model with
dissipation is still debated �29–34�.

We show that when the causal structure of the OFC model
is studied with the network method mentioned above, it does
indeed reveal some similarities to seismicity, such as the de-
gree distributions of the network and some aspects of the
recurrence time and distance statistics. However, there are
several important differences—including the absence of a
rupture length—that severely hinder its adoption as a plau-
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sible �sole� description of the fundamental mechanisms re-
sponsible for the spatiotemporal correlations of seismicity.
Many of those discrepancies seem to be closely related to the
fact that the model is defined on a regular, discrete lattice and
to the existence of quasiperiodic attractors �25�. These fea-
tures, which are totally absent in seismicity, manifest them-
selves quite clearly in several aspects of the recurrence net-
work. Also, the recurrence time statistics shows a
characteristic time due to the fact that the system is uni-
formly driven.

The outline of our paper is as follows. In Sec. II, we
review the OFC model, and Sec. III summarizes the network
method to search for signs of causal structure in spatiotem-
poral data. Section IV presents the results obtained for the
OFC model, which are compared to real seismicity. We con-
clude in Sec. V.

II. OLAMI-FEDER-CHRISTENSEN MODEL

The OFC model �21� is inspired by the Burridge-Knopoff
spring-block model �35� and is defined on a square lattice of
size L2. To each site �i , j�, a “tension” zij is assigned, initially
chosen at random from the interval �0,zc�. The entire system
is driven slowly, with every zij increasing uniformly. When-
ever a site reaches the threshold tension zij =zc, a relaxation
event—called “avalanche” or “earthquake”—starts. The
originating site of the avalanche �i , j� is called the epicenter.
The dynamics of such an event is as follows: A fraction � of
the tension at the epicenter is transferred to each of its four
neighbors, zi�1,j�1=zi�1,j�1+�zij, and the tension at the site
itself is reset, zij =0. If the tension at any of the neighboring
sites reaches the threshold, zi�1,j�1�zc, the same toppling
rules are applied again. This dynamics continues until there
are no more sites in the system with zij �zc. Then, the ten-
sion increases uniformly again until the next avalanche oc-
curs. Without loss of generality, we set zc=1. The total num-
ber of topplings during an avalanche is called the “size” of
the avalanche s. In contrast, the total number of sites that
toppled �ignoring multiple topplings of the same site� is
called the “area” of the avalanche a. The time in the system
can be measured either discretely, by the number of events
�“iterations”�, or continuously, by the cumulative tension in-
jected in the system when it is driven �the so-called “natural”
time scale�. The parameter � defines the level of local con-
servation of the system. For �=0.25 the system is locally
conservative, and for ��0.25 it is dissipative. We consider
here only the case of open-boundary conditions; i.e., the sites
at the border of the lattice transfer tension out of the system
�or to an imaginary neighbor�, so the system is always glo-
bally nonconservative.

After a transient regime, which is increasingly longer for
smaller values of �, the system reaches a stationary state
which has a distribution of event sizes resembling a power
law in the tail for the largest, numerically accessible system
sizes �see Ref. �34� for an extensive review and the most
recent results�. For the values of �� �0.18;0.2;0.22� and L
=1000 we consider here, the power-law tail has a unique
exponent around −1.8 �30�. Yet the occurrence of events is
not uniformly distributed within the lattice and tends to hap-

pen closer to the boundaries �25,31�. This “border effect”
prevents the event size statistics from obeying finite-size
scaling �FSS� with the size of the lattice. Only when events
close to the border are ignored and an internal subset of the
system is considered is FSS realized �31�. Interestingly, this
border effect does not seem to scale with system size �25�.
To accommodate for these observations, we generally restrict
our analysis to synthetic catalogs generated by the OFC
model which contain only those events involving sites which
are all at a distance of at least 100 sites away from the
boundary. The effective systems size is thus Lbulk=800.

An important aspect in seismicity is the effect of the de-
tection threshold: Earthquake catalogs are only complete
above a certain magnitude value which depends on the net-
work of seismometers deployed in a given area. Thus, it is
crucial to understand how the statistical properties of seis-
micity vary with the magnitude threshold. To address this
issue in the OFC model, we consider catalogs for different
lower threshold values of event sizes sth. Reasonable choices
of these values are limited by the particular dynamics of the
OFC model and lattice effects. For example, it is well known
that events of size 1 have their own separate dynamics and
obey a different statistics �34�. This is easy to justify, since
events of size 1 will occur even if there is no self-
organization—i.e., �=0. The effects of this particular dy-
namics and of the discrete lattice can be clearly seen in the
spatial shapes of the avalanches as summarized in Fig. 1:
The ratio between the average area �ar� of the smallest rect-
angle which contains an avalanche of area a and a varies
significantly with a for all considered values of �. Here the
average is taken over all events of area a. Only for events
above a certain size ath	102 does ar scale linearly with a
�see inset of Fig. 1�, independent of �. Yet this linear scaling
is limited to values of a�3�104 due to the finite system

FIG. 1. �Color online� The average area �ar� of the smallest
rectangle on the lattice containing a given avalanche of spatial ex-
tent a for different values of the dissipation parameter �. Only
avalanches contained within the bulk, Lbulk=800, are considered
�see text for details�. The solid line corresponds to a linear increase.
Inset: rescaled version indicating that the area scales linearly with a
independent of � for 300�a�30 000 �area enclosed by straight
lines�.
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size. Since area and size of an avalanche are basically iden-
tical for the parameters of � considered here,1 we only con-
sider catalogs with lower size threshold sth� �300; 30 000�
in the following.

To be more specific, each synthetic catalog generated by
the OFC model contains N consecutive events or avalanches
occurring after the statistically stationary regime has been
reached2 for L=1000 and Lbulk=800. Each event k is charac-
terized by its size sk, its epicenter location �i , j�k, and its time
of occurrence, tk, measured in terms of the continuous natu-
ral time scale �the discrete avalanche number time scale of
the OFC model �36� is basically equivalent�. The various
catalogs for different values of � and sth are given in Table I.

III. NETWORK OF RECURRENCES

We analyze the catalogs generated by the OFC model
according to a recently proposed method which has proved
helpful in characterizing the spatiotemporal clustering of
seismicity and in detecting causal signatures between events
�17,18�. The essential idea is to extend the notion of a recur-
rence to spatiotemporal point processes: An event is defined
to be a recurrence of any previous event if it occurred closer
in space than all intervening events. Recurrences are there-
fore record-breaking events with respect to distance. By

linking each event to its recurrences, a directed network3 of
recurrences is obtained: Each event ak, with k=1, . . . ,N, is a
vertex in the network, and a directed edge from ak to am
exists for k�m if am is a recurrence of ak—i.e., if the dis-
tance between �i , j�m and �i , j�k is smaller than the distance
between �i , j�k and �i , j�k� for all events ak� with k�k��m.
This definition assumes that the events are ordered according
to their occurrence in time tk. Obviously, each recurrence or
edge can be characterized by the time interval t= tm− tk be-
tween the two connected events k and m and by the spatial
distance l between the two. Note that the mapping of the
dynamics to a network is entirely data driven and does not
impose any arbitrary space and time scales other than those
associated with the given event or earthquake catalog—in
contrast, for example, to methods typically used to define
aftershocks. Comparing the statistical properties of the net-
work of recurrences for a given catalog to the properties of a
network obtained for a random point process without any
causal relation between events highlights relevant parts of
the underlying causal dynamical process�es� generating the
pattern. For the OFC model, such a random process or null
model can be obtained by shuffling the entire catalog, con-
taining all events: Shuffle the sizes and the epicenter loca-
tions separately while keeping the times of occurrence. Later
the sth threshold can be raised and the corresponding shuffled
versions of each catalog can be obtained. For a random spa-
tiotemporal point process in continuous space and time
�CST�, several statistical properties of the network of recur-
rences are even known analytically �18�

IV. RESULTS

In the following, we compare the network properties of
the OFC catalogs not only with those of their random or
shuffled counterparts, but also with the network properties
found for earthquake catalogs from southern California
�17,18�. The particular focus is on the network topology as
summarized, for example, in Refs. �19,20� and on distribu-
tions associated with the temporal and spatial distances be-
tween an event and its recurrences.

A. Topological properties

1. Network growth

An important aspect of the analysis of networks and their
dynamics is the change in their topology with time. In the
case of networks of recurrences, this corresponds to the situ-
ation when a given catalog is extended to cover a longer time

1The area a of an avalanche can in principle be different from its
size s, since sites can topple more than once. However, there is a
transition value of �, below which multiple topplings are impos-
sible. This value can be obtained by considering the extremal situ-
ation where a site with tension 1 is about to topple, whose neigh-
bors also have tension 1. After the site topples, it will also cause the
topplings of the neighbors, which will then return tension to origi-
nal site. The amount of tension returned is 4��1+��. If this value is
below 1, then the original site will not topple a second time, which
means that no site in any other situation will topple a second time.
Thus, the transition value is �= �
2−1� /2�0.207. Below this
value, a=s for any event. Simulations show that even when the
value of � is slightly above this transition, the occurrence of mul-
tiple topplings is negligible. For the range of �� �0.22,0.18� stud-
ied here, multiple topplings play no detectable role.

2The sizes of the discarded transients were 	1010, 	7�109, and
	4�109 iterations for �=0.18, 0.2, and 0.22, respectively.

3A network is composed of a set of discrete elements called ver-
tices �or nodes� and a set of pairs of vertices �which can be ordered
or not�, called edges �or links�, which may describe some relation-
ship between two vertices. Two vertices are neighbors if there is a
edge between them. The number of neighbors of a given vertex is
called the degree of the vertex. If the edges of the network are
directed, then the vertex can have in-neighbors and out-neighbors,
depending on the direction of the corresponding edge, and therefore
also an in-degree and an out-degree. See �20� for an extensive and
detailed review of these concepts.

TABLE I. Number of events, N, in the catalogs generated by the
OFC model for different values of � and lower size threshold sth.

sth �=0.18 �=0.20 �=0.22

300 1000000 1000000 1000000

500 641933 676324 685237

1000 327124 394235 400339

3000 107550 148311 156189

5000 60041 87102 94968

10000 22205 40208 42991

30000 2547 8432 8909
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period and, thus, contains more events. In general, some
properties of the network of recurrences depend on its size N.
For random CST events, one such property is the average
degree �k� or, equivalently, the average number of recur-
rences per event. It grows with the size of the network as
�k�� ln�N� for N�1 �18�. While this is roughly what we find
for the shuffled OFC catalogs, the original OFC catalogs
show quite a different growth as can be seen in Fig. 2. Inde-
pendently of the value of �, the average degree “saturates”
quickly around a value close to 5 and grows very little even
after the catalog is a couple of orders of magnitude larger.
When the catalog is shuffled, a portion of the growth can be
well represented by ln�N�, but only up to 	104 events, after
which it grows more slowly.

These observations illustrate one of the main features of
the OFC model: namely, the repetitive occurrence of events
originating at the same location. Obviously, there is a finite
probability that the epicenters of two events are identical
since the OFC model is defined on a discrete and finite lat-
tice. If this happens, the cascade of recurrences of the first
event ends or is “closed” and the number of recurrences of
this event does not increase further �see Fig. 3�. If this were
exclusively due to the finiteness of the discrete lattice, one

would expect this to happen according to a geometric distri-
bution with average Lbulk

2 .4 In particular, this effect would not
be relevant in the thermodynamic limit Lbulk→	. However,
our simulations show that the repeated occurrence of the
same epicenter happens much more frequently in the OFC
model. In particular, the OFC catalogs for sth=300 in Table I
have 79%, 87%, and 92% closed cascades for �=0.22, 0.20,
and 0.18, respectively.5 This is due to marginal synchroniza-
tion of neighboring sites �37� and the existence of quasiperi-
odic patterns in the dynamics of the OFC model �25� causing
the repeated triggering of epicenters and similar events. Con-
sequently, the average out-degree of networks generated by
the OFC model grows rather slowly. Moreover, the growth in
�k� basically saturates after 	103 events, as Fig. 2 shows.
This is at least two orders of magnitude smaller than the
rough estimate of Lbulk

2 =6.4�105 based on the lattice size.
When the catalog is shuffled, it does not entirely remove

the effect. This is because the average frequency of a given
epicenter does not change and the distribution of these fre-
quencies is quite broad, resembling a power law �25�. Yet the
shuffling destroys the relatively short periods of quasiperi-
odic dynamics and increases in most cases the time it takes
for the activity to return to the same epicenter and to close a
given cascade of recurrences. Thus, �k� is larger and its
growth is very close to the predicted behavior for random
CST events until the effects of the broad distribution of the
epicenters frequencies become important after 	104 events.

The network growth described above differs significantly
from what is obtained for seismicity, since real epicenters
happen on a continuous space and therefore never occur ex-
actly in the same place �save, of course, for limitations in
precisely locating the epicenters�. Hence, the network growth
for seismicity—at least for the given catalog sizes—does not
exhibit the “saturation” of the average degree obtained for
the OFC model and grows instead continuously as �k�
�0.84 ln�N� �18�.

2. Degree distributions

A more detailed aspect of the network topology is the
distribution of in- and out-degrees, P�kin� and P�kout�. In the
context of recurrence networks, the out-degree of a vertex
corresponds to its number of recurrences, while the in-degree
is the number of events of which it is a recurrence. As shown
in Fig. 4, the out-degree distribution deviates significantly
from the random CST case, where a Poisson distribution is
expected both for the in- and out-degree distributions �18�.

4If epicenters were randomly distributed on the lattice, there
would be a probability p=1 /L2 of it occurring at each time step at
one particular site. Once it occurs at a particular site, the probability
of it occurring at the same site for the first time again after T events
is P�T�= �1− p�T−1p.

5The ratio of open versus closed cascades of recurrences, after
some initial fluctuations, remains stable as the catalog grows, at
least for the lengths of time studied. However, since the size of the
system is finite, eventually the number of closed cascades should
overcome the number of open ones. The observed stability shows
that the obtained catalogs are still not affected by this finite-size
effect.

FIG. 2. �Color online� Mean degree �k� vs catalog size N for
sth=300 and different values of �, for the regular and shuffled OFC
catalogs. N=106 corresponds to the full catalogs—see Table I. The
solid line is of the form 0.95 ln�N�+const.

d = 04

d1

d2

d3d < 04

d1

d2

d3

(a) (b)

FIG. 3. �Color online� Schematic representation of two cascades
of recurrences of size 4. In both cases, d4�d3�d2�d1. The cas-
cade on the left is “open”—i.e., it is possible for a fifth recurrence
to occur—since d4
0. This is not the case for the cascade on the
right. Since d4=0, this cascade is “closed” and no distance will be
able to break the record.
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The out-degree distribution seems instead to decay exponen-
tially, with inclination slightly dependent on �. The in-degree
distribution is closer to a Poissonian. The overall shape of
the distributions also does not depend on the choice of the
lower size threshold for 300�sth�30 000 �not shown�.
When the catalogs are shuffled, the obtained out-degree dis-
tribution is very close to a Poissonian �Fig. 5�, as expected
for the random CST case.

The in- and out-degree distributions obtained for the
original OFC catalogs are basically identical to those for
seismicity �18�. The only significant differences are the val-
ues of P�1� for the out-degree. For seismicity, it is much
more likely to have an event with out-degree one or equiva-
lently an event with a single recurrence. This is related to the
finite extension of an earthquake, as characterized by its
“rupture length,” and the corresponding microscopic dynam-
ics. Thus, our findings suggest the absence of such a length

in the OFC model. This is indeed confirmed by other, more
direct means discussed in Sec. IV C. Nevertheless, the close
resemblance of the degree distributions for the OFC catalogs
and earthquake catalogs suggests that the OFC model is able
to reproduce all other nontrivial gross features of the spa-
tiotemporal clustering of seismicity which are captured by
the degree distributions.

3. Degree-degree correlations

The network topology can be further characterized by the
degree-degree correlations �20�. These correlations indicate
how likely vertices of a given in- or out-degree are connected
to vertices with another given kin or kout. To capture these
correlations we measure the average kin or kout of the neigh-
bors of a vertex with a given kin or kout:

�k�in,out�
nn ��k�in,out�� =

�
i,j

Aij
k�in,out�

�j�

kout
�i� ��k�in,out�

�i� − k�in,out��

�
i

��k�in,out�
�i� − k�in,out��

, �1�

where Aij is the element of the adjacency matrix �1 if there is
an edge from i to j and 0 otherwise� and k�in,out�

�i� is the in- or
out-degree of vertex i. We also consider the correlations be-
tween kin and kout of the same vertex, the single-vertex
degree-degree correlations

�k�in,out���k�in,out�� =

�
i

k�in,out�
�i� ��k�in,out�

�i� − k�in,out��

�
i

��k�in,out�
�i� − k�in,out��

. �2�

For the OFC catalogs, Figs. 6 and 7 show the absence of
pronounced nontrivial �single-vertex� degree-degree correla-
tions. There are only small qualitative differences between

FIG. 4. �Color online� In-degree and out-degree distributions for
networks generated by the OFC model for sth=300 and different �’s
�see Table I for details�. The solid �black� line is a Poisson distri-
bution with the same �k� as for �=0.20.

FIG. 5. �Color online� In-degree and out-degree distributions for
networks generated from shuffled OFC catalogs with sth=300 and
different �’s. The solid �black� line is a Poisson distribution with
the same �k� as for �=0.20.

FIG. 6. �Color online� Degree-degree correlations for �=0.2
and sth=300. The curves on the bottom �blue� are for the original
catalog and on top �green� for the shuffled catalog. Note that the
offset between the curves for the original OFC catalog and the
shuffled version is simply due to different mean degrees.
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the shuffled and unshuffled catalogs,6 indicating that the
degree-degree correlations are not particularly sensitive to
the given form of spatiotemporal clustering. This is in agree-
ment with findings for seismicity �18�. Interestingly, the
single-vertex degree-degree correlation function �kout��kin�
increases with kin �Fig. 7�, for both the shuffled and original
OFC catalogs. This is different from shuffled earthquake
catalogs and especially from random CST processes, which
show a slight decrease related to the age of a vertex �18�. The
deviating behavior of the �shuffled� OFC catalogs is due to
the closing of cascades of recurrences mentioned above,
which largely reduces the correlation between the age of a
vertex and its in- and out-degree. Instead, vertices with large
kin correspond to sites with low activity which do not belong
to the quasiperiodic attractors. These sites do not experience
the aforementioned closing of the cascade of recurrences and
thus have a larger out-degree. The shuffling of the catalog
does not alter this since it does not affect the closing of
cascades—only the time it takes to close. This reasoning is
confirmed by the right panel of Fig. 7, which shows the
single-vertex degree correlation, when only open cascades of
recurrences are considered, and the increase is less evident—
and disappears completely for the shuffled case.

4. Clustering coefficient

The clustering coefficient �20� is another quantity that
characterizes the network topology. It quantifies how likely
neighbors of the same vertex are connected with each other.
In the present context, this refers to the probability that re-
currences of the same event are also recurrences of each
other.

For all vertices i with out-degree larger than 1, the local
clustering coefficient Ci is given by the ratio of existing links
Ei between its ki

out recurrences to a maximum possible num-
ber of such links, 1

2ki
out�ki

out−1�. The clustering coefficient C
of the network is defined as the average over all vertices i
with out-degree larger than 1:

C = �Ci�i =  2Ei

ki
out�ki

out − 1�� i

. �3�

The values of the clustering coefficient for the different OFC
catalogs are given in Table II. The original catalogs generate

networks which are significantly more clustered than those
generated by the shuffled catalogs. This effect decreases
slightly for larger values of �. A substantial amount of clus-
tering seems to be related to the quasiperiodic attractors of
the dynamics generating vertices with closed cascades of re-
currences. This follows directly from the observation that the
clustering is much less pronounced for those vertices with
open cascades of recurrences �Table II�. However, the latter
events still retain a higher clustering than the networks for
the shuffled OFC catalogs.

While a direct quantitative comparison with seismicity is
not possible due to different catalog sizes and different mean
degrees, the qualitative features are the same. In both cases,
the catalogs show a much higher clustering compared to their
respective shuffled counterpart.

B. Temporal distances of recurrences

The probability density function �PDF� psth�t� for the time
intervals or waiting times t associated with the recurrences or
the edges of the network is another important characteristic.
Figure 8 shows this PDF for different OFC catalogs with �
=0.2. Despite some variation with sth, all PDFs decay ap-
proximately as 1 / t up to the largest possible waiting time,

6The distributions are even independent of � or sth.

FIG. 7. �Color online� Single-vertex degree-degree correlations
for �=0.2 and sth=300. The left panel shows the results for the
original catalogs, and the right panel shows the results for the open
cascade of recurrences only. The bottom curves �green� are for the
unmodified catalogs, and the top ones �blue� are for the shuffled
catalog.

TABLE II. Clustering coefficients �Eq. �3�� of the recurrence
networks generated by the OFC model for different values of � and
lower size threshold sth=300. The values of C excluding events
with closed cascade of recurrences and for the shuffled OFC cata-
logs are shown for comparison.

� C C �open� C �shuffled�

0.18 0.4153�8� 0.2064�8� 0.15411�8�
0.20 0.3910�3� 0.1970�6� 0.15891�8�
0.22 0.3470�3� 0.1891�4� 0.14650�7�

FIG. 8. �Color online� Distribution of the waiting times between
events and their recurrences for different threshold sizes sth, for �
=0.2. The solid line on the left is a power law with exponent −0.9
and on the right one with exponent −1. Inset: rescaled distributions
with N taken from Table I.
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determined by the finite time span of the catalog, with a
superposed peak at a characteristic time tc. As the inset of
Fig. 8 shows, this characteristic time separates two slightly
different regimes. While the PDFs decay almost exactly as
1 / t for t
 tc, the decay is rather 1 / t0.9 for t� tc. Note also
that tc does not depend on sth. Such a characteristic time is
expected since the activity shows quasiperiodic behavior as
discussed in Sec. IV A 1. Moreover, tc depends on the dissi-
pation parameter �, as Fig. 9 shows. More specifically �as
the inset of Fig. 9 shows�, the characteristic time seems to be
exactly 1−4�, which is the natural period of the system: For
periodic boundary conditions and relatively small �, the sys-
tem exhibits only trivial, perfectly synchronized topplings of
size 1 and the activity returns to each site with period 1
−4� �38�. It is even possible to identify secondary character-
istic recurrence times in the inset of Fig. 9, corresponding to
integer multiples of 1−4�, again emphasizing the quasiperi-
odic behavior.7

For the shuffled OFC catalogs, psth�t� is shown in Fig. 10.
As expected, the peak at the characteristic time scale tc is
barely noticeable since the quasiperiodic behavior is basi-
cally absent in the shuffled catalog. Yet all other qualitative
features are preserved. In particular, the PDF is very different
from the behavior of psth�t� in the random CST case where a
flat regime for small t and 1 / t decay for large t exists �18�. In
Fig. 10 no such flat regime can be seen and the distribution
always decays, in two different regimes, characterized by
distinct exponents. Furthermore, in the random CST case, the
transition time t� between the two regimes scales with the
inverse of the rate of events, t�	T /N. We do not observe
such a scaling for the shuffled OFC catalogs as follows from
the inset of Fig. 10. While the data do collapse for large
arguments, there is no good collapse for small arguments.
This is due to the fact that there is a non-negligible probabil-

ity that the time interval between subsequent events in the
OFC model is arbitrarily small �36,39�—in sharp contrast to
the assumption of a Poisson process in the random CST case.

For seismicity t�—and indeed psth�t�—does not depend on
N �corresponding to a varying magnitude threshold� and
there is also no equivalent to tc �18�. These observations
clearly prove that the OFC model has certain features which
are incompatible with seismicity and which strongly influ-
ence the generated spatiotemporal clustering of events.

1. Temporal hierarchy of subsequent recurrences

Another important aspect of the network of recurrences is
the possible existence of hierarchies of recurrences. This can
be captured by the ratios of the waiting times ti / ti+1 for sub-
sequent recurrences belonging to the same originating event.
Here, it is assumed that the recurrences for a given event are
ordered according to their time of occurrence such that the
ith recurrence is followed by the �i+1�th recurrence for all
ranks i. The corresponding PDFs are shown in Fig. 11. For
the OFC catalogs, panel �a� indicates that the PDFs vary with
i. While they closely resemble a power law with exponent
−0.85 in an intermediate regime for small i, deviations occur
for larger i’s. This is independent of � and sth �not shown�.
Independent of i, there is also a peak around ti / ti+1=1. As
Fig. 11�c� shows, there are only few discernible differences
between the original and shuffled catalogs: The peak is
slightly more pronounced in the original catalog, implying
that subsequent recurrences are more likely to be separated
by a very short time interval only, and the occurrence of
smaller ratios for larger values of i is more likely for the
shuffled catalogs. A third and more pronounced but expected
difference is that the kink related to tC around ti / ti+1
	10−10 in the original catalog is absent in the shuffled cata-
log.

Even these small differences in the PDFs disappear if only
open cascades of recurrences are considered, as shown in
Figs. 11�b� and 11�d�. In all cases the PDFs depend very

7The shape of psth�t� does not change if recurrences belonging to
closed cascades are excluded. In particular, the characteristic time
scale tc is still present though slightly less pronounced.

FIG. 9. �Color online� Distribution of the waiting times between
events and their recurrences for sth=300 and varying �. Inset: res-
caled distribution, zoomed in on around the characteristic time
region.

FIG. 10. �Color online� Distribution of waiting times between
events and their recurrences for shuffled OFC catalogs with differ-
ent threshold sizes sth and �=0.2. The solid line on the left is a
power law with exponent −0.9 and on the right one with exponent
−1. Inset: rescaled distribution with N taken from Table I.
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weakly on the value of �, with all mentioned properties
equally present in the range of �’s studied.

For seismicity, the ratios ti / ti+1 for subsequent recurrences
revealed a different nontrivial characteristic �18�. Their dis-
tribution showed two power-law regimes, in contrast to a
single power law for the shuffled catalog. The spatiotemporal
correlations responsible for these results do not seem to be
present in the OFC model, as the above analysis shows.

C. Spatial distances of recurrences

Exactly like the waiting times of recurrences, the spatial
distances between an event and its recurrences can be ob-
tained for the OFC model for further characterization and
comparison with seismicity. The PDF of these distances
psth�l� is shown in Fig. 12 for �=0.2 and different size
thresholds. The results for other values of � are qualitatively
similar. The overall shape of the distributions is rather broad
with cutoffs at short and long distances due to the discrete
and finite lattices, respectively, and varies with sth. Yet, for
arguments less than the long distance cutoff, two different
regimes seem to be generally present. The inset of Fig. 12
shows an attempted scaling collapse according to the ansatz

psth�l� =
�l/sth

� �−�F�l/sth
� �

sth
� , �4�

with �=0.3 and �=1.5. If successful for arguments signifi-
cantly less than the respective finite size cutoff, it would
imply the existence of a characteristic distance dependent on
sth with l�	sth

0.3—qualitatively similar to seismicity and the
random CST case as discussed below. However, as the inset
of Fig. 12 clearly shows, the data do not collapse as intended
and a collapse does not seem to be possible at all. When only
open cascades of recurrences are considered, as shown in
Fig. 13, the PDFs are slightly different, but there is no con-

vincing collapse either. It does, however, show again that the
statistics of those events that have closed cascades, and pre-
dominantly belong to quasiperiodic attractors, are signifi-
cantly different from the “open” ones.

For the shuffled OFC catalog the corresponding results for
psth�l� are shown in Fig. 14. In this case, a collapse is indeed
possible. Here, the collapse was done using the number of
events N of the respective catalog given in Table I. Due to
the absence of nontrivial correlations in the shuffled catalogs,
this is equivalent to the scaling with sth since Nsth

−0.8 as
follows from the distribution of event sizes P�s�	s−1.8.
These findings can be directly compared to the random CST
case for which l�N−�, where �=1 /D and D is the underly-
ing spatial dimension �18�. However, for the shuffled OFC
catalog we find l�N−0.18, which would imply D�5. This is
in sharp contrast to the fact that the OFC model is defined on
a two-dimensional lattice. This disagreement can be attrib-

FIG. 11. �Color online� Distribution of the waiting time ratios
for subsequent recurrences, for �=0.2 and sth=300, for �a� the regu-
lar catalog, �b� only the “open” recurrences, �c� the shuffled catalog,
and �d� only the “open” recurrences for the shuffled catalog. In all
plots the solid line is a power law with inclination −0.85.

FIG. 12. �Color online� Distribution of recurrence distances for
�=0.2 and different threshold values sth. Inset: distributions res-
caled according to Eq. �4� with �=0.3 and �=1.5. Recurrences of
distance l=0 are not shown and were not used in the normalization.

FIG. 13. �Color online� Distribution of recurrence distances for
�=0.2 and different threshold values sth, but only considering
“open” cascades of recurrences. Inset: distributions rescaled accord-
ing to Eq. �4� with �=0.3 and �=1.35.
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uted to the assumption of continuous space made to derive
the results in Ref. �18�. On a discrete lattice, when the char-
acteristic distance approaches the fundamental lattice dis-
tance, the identification of the exponent with 1 /D cannot be
expected. Despite this mismatch, the random CST process
correctly predicts the power-law decay with exponent 1 for
large distances of the shuffled OFC catalogs. Note that this
decay clearly distinguishes the shuffled OFC catalogs from
the original OFC catalogs.

The equivalence of the scaling of psth�l� with sth and with
N for the shuffled OFC catalogs discussed above is con-
firmed by Fig. 15�c�. There, the variation of psth�l� with the
time length �t of the catalog is explicitly shown for sth
=300. Note that the x and y axes are rescaled with �t�,
where �t is the time length indicated in the legend. Not only

does the shuffled catalog vary with time �and hence N� for
small distances, but also the original catalog—even if only
open cascades of recurrences are considered �see Figs. 15�a�
and 15�b��. In the latter case, the different curves can be
collapsed using the same ansatz as for the shuffled catalog
with �=0.37, while the time dependence of the unmodified
catalog seems to be more elaborate �it is shown unscaled in
Fig. 15�. Moreover, comparing Figs. 15�b� and the inset of
Fig. 13 allows one to test the scaling relation N�sth

−0.8� in
the case of open cascades of recurrences. Indeed, we have
0.8�0.37�0.3 assuming N�t. This would imply that the
dependence of psth�l� on sth is simply due to the variation in
N. Yet the fact that psth�l� does not obey scaling suggests that
the situation is more complicated and that there is a non-
trivial dependence on sth.

For seismicity, psth�l� shows a characteristic distance l�,
after which the distribution decays as a power law with an
exponent close to 1 �18�. The value of l� depends only on the
lower-magnitude threshold and, in particular, does not
change with time �or N� for fixed m. More specifically the
scaling of this characteristic distance obeys the ansatz
l��m�100.45m, where m is the lower threshold magnitude.
This allows one to identify l� with the rupture length of an
earthquake—its spatial extent—even though it is explicitly
neglected in the point process description. In particular, it
directly relates the underlying microscopic dynamics to the
statistical properties of the network of recurrences—one of
the main achievements for seismicity. As shown above, the
OFC model does not successfully reproduce these features.
While the characteristic distance does depend on the lower
threshold size, no simple scaling ansatz can be identified �Eq.
�4��, even when only “open” cascades of recurrences are con-
sidered. More importantly, the characteristic distance de-
creases with time in both cases.

1. Spatial hierarchy of subsequent recurrences

The spatial hierarchy of recurrences can be captured by
the distribution of distance ratios li+1 / li for subsequent recur-
rences belonging to the same originating event. Here, it is
assumed that the recurrences for a given event are ordered
according to their time of occurrence such that the ith recur-
rence is followed by the �i+1�th recurrence. The correspond-
ing PDFs are shown in Fig. 16 for �=0.2 and sth=300, but
the PDFs seem to be independent of the specific values of �
and sth in the range we studied. We have also included the
case i=0 for which we use l0=
2Lbulk. Note that l1 corre-
sponds to the distances between subsequent events and that
in this case there is a cutoff at large arguments due to the
finite lattice size. For all i
0 the PDFs shown in Fig. 16
seem to be independent of i. For the original OFC catalog
�Fig. 16�a��, the PDFs increase for small arguments and then
become flat for larger ones, before increasing again as the
ratio approaches 1. The same behavior is observed when
only open cascades of recurrences are considered �Fig.
16�b��.

The situation is different for the shuffled OFC catalogs.
As shown in Fig. 16�c�, all PDFs increase as a power law
with exponent 1. This is similar to the random CST model
which predicts p�x�=DxD−1, independent of i, with x

FIG. 14. �Color online� Distribution of recurrence distances for
the shuffled OFC catalog with �=0.2 and different threshold values
sth. Inset: distributions rescaled according to the number of events
�see Table I� as indicated in the legend.

FIG. 15. �Color online� Distribution of recurrence distances for
�=0.2 and sth=300, for an increasingly larger potion of the catalog
�t, rescaled as indicated in the legend, for �a� the regular catalog
��=0—i.e., no scaling�, �b� only the “open” recurrences ��=0.37�,
and �c� the shuffled catalog ��=0.18�.
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= li+1 / li �18�. For the shuffled OFC catalogs, this would im-
ply a spatial dimension D=2, exactly as expected. The same
behavior is observed when only open cascades of recurrences
are considered �Fig. 16�d��. The comparison of the OFC
catalogs and their shuffled counterparts suggests that the dis-
tribution of ratios between subsequent recurrence distances
indeed captures nontrivial aspects of the spatiotemporal dy-
namics.

All cases are, however, very different from seismicity,
where the ratios all decay as a power law with exponent
	0.6.

V. DISCUSSION AND CONCLUSION

We have studied the network of recurrences of the OFC
model with the objective of characterizing its causal struc-
ture and comparing it to seismicity. We have found that, in
agreement with previous results �23–25�, the model does ex-
hibit some nontrivial features observed in seismicity, but it
falls short of a complete qualitative description of several
robust features of spatiotemporal clustering captured by the

used method. More specifically, the model reproduces central
topological features of the recurrences network, which are
the degree distributions and high clustering, as well as the
absence of nontrivial degree correlations and some other par-
tial aspects of the recurrence distance and time distributions.
However, the two most important properties of the dynamics
of seismicity identified by this recurrence approach are, first,
that the time �distance� distributions are independent of mag-
nitude thresholds �time� and, second, that the distance statis-
tics provides an independent assessment of the rupture length
of earthquakes. The OFC model fails to reproduce the first
feature, as both the time and distance distributions vary with
magnitude threshold and time, respectively. The second fea-
ture is also not reproduced. While there is a dependence of
the distance distribution on the size of the events, there is no
scaling which would allow one to identify a rupture length.
One third, and more subtle, characteristic of the recurrences
which is not reproduced by the OFC model is the hierarchy
of recurrences, given by the distribution of ratios of time and
distance between consecutive recurrences, which in the case
of seismicity deviates significantly from the random case.
Moreover, the whole analysis exposes another crucial aspect
of the OFC model, which is the elevated occurrence of epi-
centers at distance zero from one another, tightly connected
to quasiperiodicity and well distinct from seismicity.

Obviously, the OFC model was not intended to be a com-
plete description of seismicity. It was mainly proposed as a
conceptual model and a possible origin of the Gutenberg-
Richter law from a SOC point of view. Also, like the
Burridge-Knopoff spring-block model, it aims to model the
dynamics of a single fault, and not the complex interplay of
different fault structures as observed in reality. Despite these
limitations, the OFC model is capable of showing a rich
dynamics, reproducing even some more subtle features of the
spatiotemporal clustering of earthquakes.
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